剪切胡克定律适用于什么变形范围(剪切胡克定律)

导读 大家好,我是小房,我来为大家解答以上问题。剪切胡克定律适用于什么变形范围,剪切胡克定律很多人还不知道,现在让我们一起来看看吧!1、...

大家好,我是小房,我来为大家解答以上问题。剪切胡克定律适用于什么变形范围,剪切胡克定律很多人还不知道,现在让我们一起来看看吧!

1、 由R.胡克于1678年提   胡克定律相关图表 出而得名。

2、胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=Εε,式中E为常数,称为弹性模量或杨氏模量。

3、把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。

4、胡克定律为弹性力学的发展奠定了基础。

5、各向同性材料的广义胡克定律有两种常用的数学形式: σ11=λ(ε11+ε22+ε33)+2Gε11,σ23=2Gε23, σ22=λ(ε11+ε22+ε33)+2Gε22,σ31=2Gε31,(1) σ33=λ(ε11+ε22+ε33)+2Gε33,σ12=2Gε12,及 式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模 量;E为弹性模量(或杨氏模量);v为泊松比。

6、λ、G、E和v之间存在下列联系: 式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题。

7、 根据无初始应力的假设,(f 1)0应为零。

8、对于均匀材料,材料性质与坐标   英国力学家胡克 无关,因此函数 f 1 对应变的一阶偏导数为常数。

9、因此应力应变的一般关系表达式可以简化为 上述关系式是胡克(Hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律。

10、 广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个。

11、 如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,Cmn 是坐标x,y,z的函数。

12、 但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。

13、 这一条件反映在广义胡克定理上,就是Cmn 为弹性常数。

14、 胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度变化量x成正比,即F= kx。

15、k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。

16、 弹簧的串并联问题 串联:劲度系数关系1/k=1/k1+1/k2 并联:劲度系数关系k=k1+k2 注:弹簧越串越软,越并越硬,与弹簧各自长度无关。

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!