随机变量及其分布思维导图高中(随机变量及其分布)

导读 大家好,我是小房,我来为大家解答以上问题。随机变量及其分布思维导图高中,随机变量及其分布很多人还不知道,现在让我们一起来看看吧!1...

大家好,我是小房,我来为大家解答以上问题。随机变量及其分布思维导图高中,随机变量及其分布很多人还不知道,现在让我们一起来看看吧!

1、随机变量   random variable   表示随机现象(在一定条件下,并不总是出现相同结果的现象称为随机现象)各种结果的变量(一切可能的样本点)。

2、例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例。

3、   一个随机试验的可能结果(称为基本事件)的全体组成一个基本空间Ω 。

4、 随机变量X是定义在基本空间Ω上的取值为实数的函数,即基本空间Ω中每一个点,也就是每个基本事件都有实轴上的点与之对应。

5、例如,随机投掷一枚硬币 ,可能的结果有正面朝上 ,反面朝上两种 ,若定义X为投掷一枚硬币时正面朝上的次数 , 则X为一随机变量,当正面朝上时,X取值1;当反面朝上时,X取值0。

6、又如,掷一颗骰子 ,它的所有可能结果是出现1点、2点、3点、4点、5点和6点 ,若定义X为掷一颗骰子时出现的点数,则X为一随机变量,出现1,2,3,4,5,6点时X分别取值1,2,3,4,5,6。

7、   要全面了解一个随机变量,不但要知道它取哪些值,而且要知道它取这些值的规律,即要掌握它的概率分布。

8、概率分布可以由分布函数刻画。

9、若知道一个随机变量的分布函数,则它取任何值和它落入某个数值区间内的概率都可以求出。

10、   有些随机现象需要同时用多个随机变量来描述。

11、例如 ,子弹着点的位置需要两个坐标才能确定,它是一个二维随机变量。

12、类似地,需要n个随机变量来描述的随机现象中,这n个随机变量组成n维随机向量 。

13、描述随机向量的取值规律 ,用联合分布函数。

14、随机向量中每个随机变量的分布函数,称为边缘分布函数。

15、若联合分布函数等于边缘分布函数的乘积 ,则称这些单个随机变量之间是相互独立的。

16、独立性是概率论所独有的一个重要概念。

17、   random variable   在不同的条件下由于偶然因素影响,其可能取各种不同的值,具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。

18、随机变量可以是离散型的,也可以是连续型的。

19、如分析测试中的测定值就是一个以概率取值的随机变量,http://tt668.5d6d.com 被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。

20、随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。

本文到此讲解完毕了,希望对大家有帮助。

免责声明:本文由用户上传,如有侵权请联系删除!